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TEMPERATURE FIELD IN A HEAT-SENSITIVE
MULTILAYER HALF-SPACE

Yu. M. Kolyano', V. A. Volos, UDC 536.24
E. G. Ivanik, and V. I. Gavrysh

A method is proposed for solving a nonlinear axisymmetrical boundary-value heat-conduction problem for
a multilayered half-space with heat transfer, heated by internal heat sources.

When determining the temperature fields in structural elements of radioelectronic equipment, in particular,
in manufacture of metalloceramic casings (MCC) at high temperatures, it is important to take into account the
dependence of the thermophysical characteristics on the temperature. Such MCC technologies as fusing of
semiconductor pastes, applied on ceramic substrates, and brazing of terminals to the latter are implemented at
293-1173 K. Temperature gradients that arise in different parts of ceramic radio components cause microcracks,
buckling, exfoliation, bloating, and fracture of semiconductors.

Heat conduction equations for heat-sensitive piecewise-homogeneous bodies are obtained in [1, 2].
Following [2], we use relations and equations describing the nonlinear boundary-value axisymmetric heat
conduction problem for a multilayered half-space (Fig. 1) with heat transfer, heated by internal heat sources of
power gg, uniformly distributed throughout the volume of a finite cylinder JtRz(zj_l -z
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is the thermal conductivity of the multilayered half-space; N(z) = S-(z — z1)—S-(z — z), 1l =j<n.
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we transform nonlinear problem (1), (2) to the form

Deceased

Institute for Applied Problems of Mechanics and Mathematics, Academy of Sciences of Ukraine, Lvov.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66, No. 2, pp. 226-234, February, 1994. Original article
submitted March 31, 1992,

1062-0125/94/6602-0203$12.50 ©1995 Plenum Publishing Corporation 203



ORER r
@ N
S
N
T 0|
2R
Q/_
®
Z

Fig. 1. Multilayer isotropic half-space consisting of n diverse layers, differing
in thermophysical and geometric parameters, and referred to the cylindrical
coordinate system (r, ¢, z) with the origin on the boundary surface.
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Considering preliminarily the solution of the corresponding linear boundary-value heat conduction problem
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we will find the character of change of the functions #(r, 0), #(r, zp.
The linear heat conduction equation for a multilayered half-space with internal heat sources is obtained in
{31 in a more general case. Following [3], we may write for our case
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where T=A(2)©; ©® =t — tped.
Applying the Hankel transformation of the coordinate r to Eq. (8) and boundary conditions (7), we arrive
at the ordinary differential equation with constant coefficients
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and the boundary conditions

where
T= [y (k) Tdr.
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Solving Eq. (9) yields the expression
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Here C; and C; are integration constants; f(§, z) =ch £(z — zi1) Sz — zp) —chEGz - z) S_(z - z)— N(2).

The quantities 61 z=z; are found from the system of linear algebraic equations
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Thus, recurrence relations are found for determination of F}", ¢i(&), which are necessary for determination

of @I z=2;

From boundary conditions (10) we also derive expressions for the integration constants:
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Fig. 2. Approximation of the function #(r, z)) — t;.q4.
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Passing to the inverse transform in (11) with account for (12), (13), we may write
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We now represent the functions #(r, 0), #(r, z;), whose variation is determined by (14), as follows (Fig. 2):
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Here k=0, 1, 2, ..., n—1; z9 = 0; r; € 10; r.[; m is the number of subdivisions of the interval ] 0; r.[; r, is the
value of the radial coordinate at which the temperature becomes practically constant and equal 10 #peq; tfk) are the
still unknown temperatures.

Substituting expression (15) into Eq. (4) and boundary condition (5) at the surface z = 0, we obtain
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Having applied the integral Hankel transformation of the coordinate r to boundary-value problem (16),
(17), we arrive at the ordinary differential equation with constant coefficients
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Solving boundary-value problem (18), (19) and then passing to the inverse transform using the
transformation formula, we obtain the following expression for the function
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Introducing concrete dependences of the thermal conductivities of conjugated elements into (3), (20) and
comparing the obtained expressions for the function ¢ on the surfaces z = 0, z;, z, ..., z4—1 yields a system of
nonlinear algebraic equations for determining the unknown temperatures t[(k).

The sought temperature field for the system under consideration is determined from nonlinear algebraic
equations obtained from (3) and (20} after substituting in them expressions for the dependences of the thermal
conductivities of the layers of the half-space.

As an example, we consider a three-layer half-space with heat sources in the second layer. In this case, n
= 3, j= 2. In many practical cases [4] the thermal conductivity depends linearly on the temperature, 4 = Aa -
kt), where 4% and k are the reference and temperature coefficients of thermal conductivity.

The solution of the corresponding linear problem for our example is written in the form of (14), where the
function ® &, 2) is:
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Next, using [4] we will have for the dimensionless temperature T, =t/ #peq:
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Fig. 3. Dimensionless temperature 7" as a function of the dimensionless
coordinate p at Bi=1,Ki=1,Z=1 (a) and at Bi=1, Z=2 (b) and the
dimensionless coordinate ZatBi=1,Ki=1,p=1(c)andatKi=1,p =1 (d).
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T3 | 4=z is determined from an algebraic equation by substituting (28) into the expression
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Using formulas (25)-(27) at m = 5 in the interval 300-1500 K and formula (14) with account for expressions
(21)-(24), we performed numerical calculations and investigated distributions of the dimensionless temperature

T*=1/tpeq — 1 for the following materials: tungsten, the 1st layer; molybdenum, the 2nd layer; ceramics VK94-1,
the 3rd layer [5].
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Figure 3 shows the dimensionless temperature 7" as a function of the radial p = r/R and axial Z = z/R
coordinates. As is seen from the results in Fig. 3a, ¢, account for the dependence of the thermal conductivities on
the temperature (curve 1) leads to its decrease as compared to a nonheat-sentitive system (the thermophysical
parameters are independent of the temperature, curve 2) by 3% for the above materials.

The temperature distributions over the coordinates p and z at different Ki and Bi values in Fig. 3b, d show
that with increasing Kirpichev number the temperature increases substantially in the region where the heat sources
act, and at the dimensionless coordinate z = 8 it is practically independent of the heat transfer coefficient.

NOTATION

t(r, z), temperateure field; 4;, thermal conductivity of the i-th layer of the half-space; z = z;, conjugation
surface of the i~th and (i + 1)-th layers; «,, heat transfer coefficient from the surface z = 0; fpeq, temperature of
the outer medium; S+ (), asymmetric unit functions; J, (), v-th order Bessel function of the first kind; Ki =
q0R2/ (A%tmed), Kirpichev number; Bi = azzl/l?, Biot number; Kﬁl), criterion characterizing the relative heat
conductivity of the layers of the half-space; A = (1/r)(3/3r)(rd/dr) + az/azz, Laplace operator; d+(§) =

A8/, E] = 5550 amn- = {11520
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